The NX1 can utilize information, take safety measures, and control quality while at the same time improving production efficiency through high-speed, high-precision control.
This contributes to continuous improvement in productivity.
$ 321.79
Omron produce industrial sensors range such as fiber sensors, photoelectric sensors, displacement sensors/ measurement sensors, proximity sensors, photomicro sensors and rotary encodes.
Features
The NX1 can utilize information, take safety measures, and control quality while at the same time improving production efficiency through high-speed, high-precision control.
This contributes to continuous improvement in productivity.
The NX1 provides high-speed control while utilizing information.
For example, the NX1 used for a packaging machine with the capability of handling 1,000 products per minute can collect all traceability data in synchronization with the production cycle while performing motion control.
The NX1 is the frst in the world* to integrate two different open networks: EtherNet/IP™ for scalable safety control in production lines and EtherCAT® for fast and reliable redundant safety control in machines. Furthermore, it integrates safety control into machine control in lines that require fast cycle times.
This integration allows you to standardize machines and build fexible lines.
* Based on Omron investigation in March 2018.
Although special inspection machines with built-in PC are widely used for high-speed inspections, they require special maintenance skills.
Therefore, acceptance sampling is often carried out offline to prevent line stoppages.
The NX1 can be used in conjunction with the High-speed Analog Input Unit to collect measurement data within a fixed cycle time of 5 μs. This standard controller eliminates the need for special machines with PC and can be maintained by on-site engineers. Inline inspections of all products can also be conducted easily.
The NX1 Controller integrates inputs, logic, outputs, safety, and robotics, offering a wide variety of applications that leverage information to boost productivity and measures for quality and safety.
Three industrial Ethernet ports and a power supply are housed in a compact design with a width of 66 mm.
The NX1 provides key functionality to integrate control and information for advanced manufacturing applications.
The new controller contributes to the pursuit of productivity improvements.
Synchronized control of I/O and motion within 1 ms cycle time Jitter : 1 μs
Memory capacity for variables : 33.5 MB*1
Even if a part of the EtherCAT network is disconnected, Cable Redundancy provides continuous connectivity.
This function allows you to fix disconnection without stopping the machines and production line where one controller provides both machine control and safety control.
The multicore microprocessor enables information utilization including communications and traceability without compromising control performance.
OPC UA is an IEC communication protocol which is listed as a recommendation for Industrie 4.0 and PackML. The NX1 comes equipped with an OPC UA server interface and provides a secure connection to IT systems such as MES and ERP.
The NX1 provides a easily and secure connection to the cloud by using MQTT Communications Library.
Connectivity to existing devices (e.g., Modbus/TCP*2, FINS communications, and connection to other vendor PLC*3) and EtherNet/IP™ performance (increased to 12,000 pps*4) are improved. Packet Filter enhances security, and visualization of EtherCAT® slave errors makes troubleshooting easier.
*1. The total number of bytes of retained and non-retained variables.
*2. Clients instructions are supported.
*3. SLMP commands are included in the Sysmac Library.
*4. The total pps of two ports.
Lineup
Product Name | Specifications | Model | |||||
---|---|---|---|---|---|---|---|
Number of points |
Internal I/O common |
Maximum value of load current |
Rated voltage |
I/O refreshing method |
ON/OFF response time |
||
Transistor Output Unit (Screwless |
2 | NPN | 0.5 A/point, 1 A/Unit |
24 VDC | Output refreshing with specified time stamp only *1 |
300 ns max./ 300 ns max. |
NX-OD2154 |
PNP | NX-OD2258 | ||||||
4 | NPN | 0.5 A/point, 2 A/Unit |
12 to 24 VDC |
Switching Synchronous I/O refreshing and Free- Run refreshing |
0.1 ms max./ 0.8 ms max. |
NX-OD3121 | |
24 VDC | 300 ns max./ 300 ns max. |
NX-OD3153 | |||||
PNP | 0.5 ms max./ 1.0 ms max. |
NX-OD3256 | |||||
300 ns max./ 300 ns max. |
NX-OD3257 | ||||||
2 A/point, 8 A/Unit |
0.5 ms max./ 1.0 ms max. |
NX-OD3268 | |||||
8 | NPN | 0.5 A/point, 4 A/Unit |
12 to 24 VDC |
0.1 ms max./ 0.8 ms max. |
NX-OD4121 | ||
PNP | 24 VDC | 0.5 ms max./ 1.0 ms max. |
NX-OD4256 | ||||
16 | NPN | 12 to 24 VDC |
0.1 ms max./ 0.8 ms max. |
NX-OD5121 | |||
PNP | 24 VDC | 0.5 ms max./ 1.0 ms max. |
NX-OD5256 | ||||
Transistor Output Unit (M3 Screw |
16 | NPN | 0.5 A/point, 5 A/Unit |
12 to 24 VDC |
Switching Synchronous I/O refreshing and Free- Run refreshing |
0.1 ms max./ 0.8 ms max. |
NX-OD5121-1 |
PNP | 24 VDC | 0.5 ms max./ 1.0 ms max. |
NX-OD5256-1 | ||||
Transistor Output Unit (MIL |
16 | NPN | 0.5 A/point, 2 A/Unit |
12 to 24 VDC |
Switching Synchronous I/O refreshing and Free- Run refreshing |
0.1 ms max./ 0.8 ms max. |
NX-OD5121-5 |
PNP | 24 VDC | 0.5 ms max./ 1.0 ms max. |
NX-OD5256-5 | ||||
32 | NPN | 0.5 A/point, 2 A/ common, 4 A/Unit |
12 to 24 VDC |
0.1 ms max./ 0.8 ms max. |
NX-OD6121-5 | ||
PNP | 24 VDC | 0.5 ms max./ 1.0 ms max. |
NX-OD6256-5 | ||||
Transistor Output Unit (Fujitsu |
32 | NPN | 0.5 A/point, 2 A/ common, 4 A/Unit |
12 to 24 VDC |
Switching Synchronous I/O refreshing and Free- Run refreshing |
0.1 ms max./ 0.8 ms max. |
NX-OD6121-6 |
Relay Output Unit (Screwless |
2 | Relay type: N.O. |
250 VAC/2 A (cos =1), 250 VAC/2 A (cosφ=0.4), 24 VDC/ 2 A, 4 A/Unit |
Free-Run refreshing |
15 ms max./ 15 ms max. |
NX-OC2633 | |
Relay type: N.O.+N.C. |
NX-OC2733 | ||||||
8 | Relay type: N.O. |
250 VAC/2 A (cos =1), 250 VAC/2 A (cosφ=0.4), 24 VDC/ 2 A, 8 A/Unit |
Free-Run refreshing |
15 ms max./ 15 ms max. |
NX-OC4633 |
*1. To use input refreshing with input changed time, the EtherCAT Coupler Unit with unit version 1.1 or later and the Sysmac Studio version 1.07 or higher are required.
Item | Specification | |
---|---|---|
Model | NX102-[][][][] | |
Enclosure | Mounted in a panel | |
Dimensions (mm) *1 | 72 × 100 × 90 mm (W×H×D) | |
Weight *2 | 390 g max. | |
Unit power supply |
Power supply voltage | 24 VDC (20.4 to 28.8 VDC) |
Unit power consumption *3 |
5.80 W max. | |
Inrush current *4 | For cold start at room temperature: 10 A max./0.1 ms max. and 2.5 A max./150 ms max. |
|
Current capacity of power supply terminal *5 |
4 A max. | |
Isolation method | No isolation: between the Unit power supply terminal and internal circuit | |
Power supply to the NX Unit power supply |
NX Unit power supply capacity |
10 W max. |
NX Unit power supply efficiency |
80% | |
Isolation method | No isolation: between the Unit power supply terminal and NX Unit power supply | |
I/O Power Supply to NX Units | Not provided *6 | |
External connection terminal |
Communication connector |
RJ45 for EtherNet/IP Communications × 2 RJ45 for EtherCAT Communications × 1 |
Screwless clamping terminal block |
For Unit power supply input and grounding (Removable) | |
Output terminal (service supply) |
Not provided | |
RUN output terminal | Not provided | |
NX bus connector | 32 NX Units can be connected |
Item | Specification | |
---|---|---|
Enclosure | Mounted in a panel | |
Grounding method | Ground to less than 100 Ω. | |
Operating environment |
Ambient operating temperature |
0 to 55°C |
Ambient operating humidity |
10% to 95% (with no condensation) | |
Atmosphere | Must be free from corrosive gases. | |
Ambient storage temperature |
-25 to 70°C (excluding battery) | |
Altitude | 2,000 m max. | |
Pollution degree | 2 or less: Meets IEC 61010-2-201. | |
Noise immunity | 2 kV on power supply line (Conforms to IEC 61000-4-4.) | |
Overvoltage category | Category II: Meets IEC 61010-2-201. | |
EMC immunity level | Zone B | |
Vibration resistance | Conforms to IEC 60068-2-6. 5 to 8.4 Hz with 3.5-mm amplitude, 8.4 to 150 Hz, acceleration of 9.8 m/s2 100 min each in X, Y, and Z directions (10 sweeps of 10 min each = 100 min total) |
|
Shock resistance | Conforms to IEC 60068-2-27. 147 m/s2, 3 times in X, Y, and Z directions |
|
Battery | Life | 5 years (Power ON time rate 0% (power OFF)) |
Model | CJ1W-BAT01 (sold separately) | |
Applicable standards *1 |
EU Directives | EN 61131-2 |
cULus | Listed UL 61010-2-201 and ANSI/ISA 12.12.01 | |
Shipbuilding Standards | NK, LR | |
Other than the above. | RCM, KC, and EAC |
*1. Refer to the consult your OMRON representative for the most recent applicable standards for each model.
Item | NX102- | ||||||
---|---|---|---|---|---|---|---|
12[][] | 11[][] | 10[][] | 90[][] | ||||
Processing time |
Instruction execution times |
LD instruction | 3.3 ns | ||||
Math instructions (for long real data) |
70 ns or more | ||||||
Programming | Program capacity *1 |
Size | 5 MB | ||||
Quantity | Number of POU definitions |
3,000 | |||||
Number of POU instances |
9,000 | ||||||
Memory capacity for variables *2 |
Retain attribute |
Size | 1.5 MB | ||||
Number of variables |
10,000 | ||||||
No Retain attribute |
Size | 32 MB | |||||
Number of variables |
90,000 | ||||||
Data types | Number of data types | 1,000 | |||||
Memory for CJ-series Units (Can be specified with AT specifications for variables.) |
CIO Area | 0 to 6,144 words (CIO 0 to CIO 6,143) *3 |
|||||
Work Area | 0 to 512 words (W0 to W511) *3 |
||||||
Holding Area | 0 to 1,536 words (H0 to H1,535) *4 |
||||||
DM Area | 0 to 32,768 words (D0 to D32,767) *4 |
||||||
EM Area | 32,768 words × 25 banks (E0_0 to E18_32,767) *4 *5 |
||||||
Motion control |
Number of controlled axes *6 |
Maximum number of controlled axes |
15 axes | 4 axes | |||
Motion control axes |
11 axes | — | |||||
Single-axis position control axes |
4 axes | ||||||
Maximum number of used real axes |
12 axes | 8 axes | 6 axes | 4 axes | |||
Used motion control servo axes |
8 axes | 4 axes | 2 axes | — | |||
Used single- axis position control servo axes |
4 axes | ||||||
Maximum number of axes for linear interpolation axis control |
4 axes per axes group | — | |||||
Number of axes for circular interpolation axis control |
2 axes per axes group | — | |||||
Maximum number of axes groups | 8 axes groups | — | |||||
Motion control period | The same control period as that is used for the process data communications cycle for EtherCAT. |
||||||
Cams | Number of cam data points |
Maximum points per cam table |
65,535 points | ||||
Maximum points for all cam tables |
262,140 points | ||||||
Maximum number of cam tables |
160 tables | ||||||
Position units | Pulse, mm, μm, nm, degree, and inch | ||||||
Override factors | 0.00%, or 0.01% to 500.00% | ||||||
Built-in EtherNet/IP port |
Number of ports | 2 | |||||
Physical layer | 10BASE-T/100BASE-TX | ||||||
Frame length | 1,514 bytes max. | ||||||
Media access method | CSMA/CD | ||||||
Modulation | Baseband | ||||||
Topology | Star | ||||||
Baud rate | 100 Mbps (100BASE-TX) | ||||||
Transmission media | STP (shielded, twisted-pair) cable of Ethernet category 5, 5e or higher |
||||||
Maximum transmission distance between Ethernet switch and node |
100 m | ||||||
Maximum number of cascade connections | There are no restrictions if an Ethernet switch is used. | ||||||
CIP service: Tag data links (cyclic com- munications) |
Maximum number of connections |
32 per port 64 total |
|||||
Packet interval *7 | Can be set for each connection. 1 to 10,000 ms in 1-ms increments |
||||||
Permissible communications band |
12,000 pps *8 *9 (including heartbeat, CIP Safety routing) |
||||||
Maximum number of tag sets | 32 per port 40 total *10 |
||||||
Tag types | Network variables CIO/WR/HR/DM |
||||||
Number of tags per connection (i.e., per tag set) |
8 (7 tags if Controller status is included in the tag set.) | ||||||
Maximum number of tags | 256 per port 512 total |
||||||
Maximum link data size per node (total size for all tags) |
19,200 bytes per port 38,400 bytes total |
||||||
Maximum data size per connection |
600 bytes | ||||||
Maximum number of registrable tag sets |
32 per port 40 total *10 (1 connection = 1 tag set) |
||||||
Maximum tag set size | 600 bytes (Two bytes are used if Controller status is included in the tag set.) |
||||||
Multi-cast packet filter *11 | Supported. | ||||||
CIP message service: Explicit messages |
Class 3 (number of connections) |
32 per port 64 total (clients plus server) |
|||||
UCMM (non- connection type) |
Maximum number of clients that can communicate at one time |
32 per port 64 total |
|||||
Maximum number of servers that can communicate at one time |
32 per port 64 total |
||||||
CIP Safety routing |
Maximum number of routable CIP Safety connections |
16 total | |||||
Maximum routable safety data length per connection |
32 bytes | ||||||
Number of TCP sockets | 60 | ||||||
Secure Socket Service |
Maximum number of Secure Socket |
60 | |||||
TLS Version | 1.2 | ||||||
OPC UA Server |
Support profile/Model | Micro Embedded Device Server Profile PLCopen Information Model |
|||||
Default Endpoint/Port | opc.tcp://192.168.250.1:4840/ | ||||||
Maximum number of sessions (Client) |
5 | ||||||
Maximum number of Monitored Items per server |
2,000 | ||||||
Sampling rate of Monitored Items (ms) |
0, 50, 100, 250, 500, 1000, 2000, 5,000, 10,000 (If set to 0 (zero), it is assumed that is set to 50.) |
||||||
Maximum number of Subscriptions per server |
100 | ||||||
Maximum number of variables that can be published |
10,000 | ||||||
Maximum number of value attributes that can be published *16 |
10,000 | ||||||
Maximum number of structure definitions that can be published |
100 | ||||||
Restrictions on variables unable to be published |
• Variables whose size is over 60 KB • Two-dimensional or higher structure arrays • Structures that include two-dimensional and higher arrays • Structures with four or higher levels of nesting • Unions • Arrays whose index number suffix does no start from 0 • Arrays with 2,048 or more elements • Structures with 100 or more members |
||||||
SecurityPolicy/Mode | Select one of the following. None Sign – Basic128Rsa15 Sign – Basic256 Sign – Basic256Sha256 SignAndEncrypt – Basic128Rsa15 SignAndEncrypt – Basic256 SignAndEncrypt – Basic256Sha256 |
||||||
Application Authentica- tion |
Authentication | X.509 | |||||
Maximum number of storable certifications |
Trusted certification: 32 Issuer certification: 32 Rejected certification: 32 |
||||||
User Authentica- tion |
Authentication | You can set the following items. User name/password Anonymous |
|||||
Built-in EtherCAT port |
Communications standard | IEC 61158 Type12 | |||||
EtherCAT master specifications | Class B (Feature Pack Motion Control compliant) | ||||||
Physical layer | 100BASE-TX | ||||||
Modulation | Baseband | ||||||
Baud rate | 100 Mbps (100BASE-TX) | ||||||
Duplex mode | Auto | ||||||
Topology | Line, daisy chain, branching and ring *13 | ||||||
Transmission media | Twisted-pair cable of category 5 or higher (double- shielded straight cable with aluminum tape and braiding) |
||||||
Maximum transmission distance between nodes |
100 m | ||||||
Maximum number of slaves | 64 | ||||||
Range of node addresses that can be set | 1 to 192 | ||||||
Maximum process data size | Input: 5,736 bytes Output: 5,736 bytes *14 |
||||||
Maximum process data size per slave | Input: 1,434 bytes Output: 1,434 bytes |
||||||
Communications cycle | 1,000 to 32,000 μs (in 250-μs increments) | ||||||
Sync jitter | 1 μs max. | ||||||
Unit configura- tion |
Units on CPU Rack |
Maximum number of NX Units that can be mounted to the CPU Unit |
32 | ||||
Maximum I/O data size that can be allocated in the CPU Unit |
Inputs: 8,192 bytes *15 Outputs: 8,192 bytes *15 |
||||||
Maximum number of NX Units for entire controller |
400 | ||||||
Power supply | Model | A non-isolated power supply for DC input is built into the CPU Unit. |
|||||
Power OFF detection time | 2 to 8 ms | ||||||
Internal clock |
Accuracy | At ambient temperature of 55°C: -3.5 to 0.5 min error per month At ambient temperature of 25°C: -1.5 to 1.5 min error per month At ambient temperature of 0°C: -3 to 1 min error per month |
|||||
Retention time of built-in capacitor | At ambient temperature of 40°C: 10 days |
Item | NX102 | |||
---|---|---|---|---|
Tasks | Function | I/O refreshing and the user program are executed in units that are called tasks. Tasks are used to specify execution conditions and execution priority. |
||
Periodically executed tasks |
Maximum number of primary periodic tasks |
1 | ||
Maximum number of periodic tasks |
2 | |||
Conditionally executed tasks |
Maximum number of event tasks |
32 | ||
Execution condition | When Activate Event Task instruction is executed or when condition expression for variable is met |
|||
Programming | POU (Program Organization Unit) |
Programs | POUs that are assigned to tasks | |
Function blocks | POUs that are used to create objects with specific conditions |
|||
Functions | POUs that are used to create objects that determine unique outputs for the inputs, such as for data processing |
|||
Programming languages |
Types | Ladder diagrams *1 and structured text (ST) | ||
Namespaces | A concept that is used to group identifiers for POU definitions |
|||
Variables | External access of variables |
Network variables | The function which allows access from the HMI, host computers, or other controllers |
|
Data types | Basic data types |
Boolean | BOOL | |
Bit strings | BYTE, WORD, DWORD, LWORD | |||
Integers | INT, SINT, DINT, LINT, UINT, USINT, UDINT, ULINT |
|||
Real numbers | REAL, LREAL | |||
Durations | TIME | |||
Dates | DATE | |||
Times of day | TIME_OF_DAY | |||
Date and time | DATE_AND_TIME | |||
Text strings | STRING | |||
Derivative data types | Structures, unions, enumerations | |||
Structures | Function | A derivative data type that groups together data with different variable types |
||
Maximum number of members |
2,048 | |||
Nesting maximum levels |
8 | |||
Member data types | Basic data types, structures, unions, enumerations, array variables |
|||
Specifying member offsets |
You can use member offsets to place structure members at any memory locations |
|||
Unions | Function | A derivative data type that enables access to the same data with different data types |
||
Maximum number of members |
4 | |||
Member data types | BOOL, BYTE, WORD, DWORD, LWORD | |||
Enumerations | Function | A derivative data type that uses text strings called enumerators to express variable values |
||
Data type attributes |
Array specifications |
Function | An array is a group of elements with the same data type. You specify the number (subscript) of the element from the first element to specify the element |
|
Maximum number of dimensions |
3 | |||
Maximum number of elements |
65,535 | |||
Array specifications for FB instances |
Supported | |||
Range specifications | You can specify a range for a data type in advance. The data type can take only values that are in the specified range |
|||
Libraries | User libraries | |||
Motion control |
Control modes | Position control, velocity control, torque control |
||
Axis types | Servo axes, virtual servo axes, encoder axes, virtual encoder axes, PTP axes |
|||
Positions that can be managed | Command positions and actual positions | |||
Single axes | Single-axis position control |
Absolute positioning | Positioning is performed for a target position that is specified with an absolute value |
|
Relative positioning | Positioning is performed for a specified travel distance from the command current position |
|||
Interrupt feeding | Positioning is performed for a specified travel distance from the position where an interrupt input was received from an external input |
|||
Cyclic synchronous absolute positioning |
A positioning command is output each control period in Position Control Mode |
|||
Single-axis velocity control |
Velocity control | Velocity control is performed in Position Control Mode |
||
Cyclic synchronous velocity control |
A velocity command is output each control period in Velocity Control Mode |
|||
Single-axis torque control |
Torque control | The torque of the motor is controlled | ||
Single-axis synchronized control |
Starting cam operation |
A cam motion is performed using the specified cam table |
||
Ending cam operation |
The cam motion for the axis that is specified with the input parameter is ended |
|||
Starting gear operation |
A gear motion with the specified gear ratio is performed between a master axis and slave axis |
|||
Positioning gear operation |
A gear motion with the specified gear ratio and sync position is performed between a master axis and slave axis |
|||
Ending gear operation | The specified gear motion or positioning gear motion is ended |
|||
Synchronous positioning |
Positioning is performed in sync with a specified master axis |
|||
Master axis phase shift |
The phase of a master axis in synchronized control is shifted |
|||
Combining axes | The command positions of two axes are added or subtracted and the result is output as the command position |
|||
Single-axis manual operation |
Powering the Servo | The Servo in the Servo Drive is turned ON to enable axis motion |
||
Jogging | An axis is jogged at a specified target velocity |
|||
Auxiliary functions for single-axis control |
Resetting axis errors |
Axes errors are cleared | ||
Homing | A motor is operated and the limit signals, home proximity signal, and home signal are used to define home |
|||
Homing with parameter |
The parameters are specified, the motor is operated, and the limit signals, home proximity signal, and home signal are used to define home |
|||
High-speed homing | Positioning is performed for an absolute target position of 0 to return to home |
|||
Stopping | An axis is decelerated to a stop | |||
Immediately stopping | An axis is stopped immediately | |||
Setting override factors |
The target velocity of an axis can be changed | |||
Changing the current position |
The command current position or actual current position of an axis can be changed to any position. |
|||
Enabling external latches |
The position of an axis is recorded when a trigger occurs |
|||
Disabling external latches |
The current latch is disabled | |||
Zone monitoring | You can monitor the command position or actual position of an axis to see when it is within a specified range (zone) |
|||
Enabling digital cam switches |
You can turn a digital output ON and OFF according to the position of an axis |
|||
Monitoring axis following error |
You can monitor whether the difference between the command positions or actual positions of two specified axes exceeds a threshold value |
|||
Resetting the following error |
The error between the command current position and actual current position is set to 0 |
|||
Torque limit | The torque control function of the Servo Drive can be enabled or disabled and the torque limits can be set to control the output torque |
|||
Slave Axis Position Compensation |
This function compensates the position of the slave axis currently in synchronized control. |
|||
Cam monitor | Outputs the specified offset position for the slave axis in synchronous control. |
|||
Start velocity | You can set the initial velocity when axis motion starts |
|||
Axes groups | Multi-axes coordinated control |
Absolute linear interpolation |
Linear interpolation is performed to a specified absolute position |
|
Relative linear interpolation |
Linear interpolation is performed to a specified relative position |
|||
Circular 2D interpolation |
Circular interpolation is performed for two axes |
|||
Axes group cyclic synchronous absolute positioning |
A positioning command is output each control period in Position Control Mode |
|||
Auxiliary functions for multi-axes coordinated control |
Resetting axes group errors |
Axes group errors and axis errors are cleared |
||
Enabling axes groups | Motion of an axes group is enabled | |||
Disabling axes groups |
Motion of an axes group is disabled | |||
Stopping axes groups |
All axes in interpolated motion are decelerated to a stop |
|||
Immediately stopping axes groups |
All axes in interpolated motion are stopped immediately |
|||
Setting axes group override factors |
The blended target velocity is changed during interpolated motion |
|||
Reading axes group positions |
The command current positions and actual current positions of an axes group can be read |
|||
Changing the axes in an axes group |
The Composition Axes parameter in the axes group parameters can be overwritten temporarily |
|||
Common items |
Cams | Setting cam table properties |
The end point index of the cam table that is specified in the input parameter is changed |
|
Saving cam tables | The cam table that is specified with the input parameter is saved in non-volatile memory in the CPU Unit |
|||
Generating cam tables |
The cam table is generated from the cam property and cam node that is specified in input parameters |
|||
Parameters | Writing MC settings | Some of the axis parameters or axes group parameters are overwritten temporarily |
||
Changing axis parameters |
The axis parameters can be accessed or changed from the user program |
|||
Auxiliary functions |
Count modes | You can select either Linear Mode (finite length) or Rotary Mode (infinite length). |
||
Unit conversions | You can set the display unit for each axis according to the machine |
|||
Acceleration/ deceleration control |
Automatic acceleration/ deceleration control |
Jerk is set for the acceleration/deceleration curve for an axis motion or axes group motion |
||
Changing the acceleration and deceleration rates |
You can change the acceleration or deceleration rate even during acceleration or deceleration |
|||
In-position check | You can set an in-position range and in- position check time to confirm when positioning is completed |
|||
Stop method | You can set the stop method to the immediate stop input signal or limit input signal |
|||
Re-execution of motion control instructions |
You can change the input variables for a motion control instruction during execution and execute the instruction again to change the target values during operation |
|||
Multi-execution of motion control instructions (Buffer Mode) |
You can specify when to start execution and how to connect the velocities between operations when another motion control instruction is executed during operation |
|||
Continuous axes group motions (Transition Mode) |
You can specify the Transition Mode for multi-execution of instructions for axes group operation |
|||
Monitoring functions |
Software limits | The movement range of an axis is monitored | ||
Following error | The error between the command current value and the actual current value is monitored for each axis |
|||
Velocity, acceleration rate, deceleration rate, torque, interpolation velocity, interpolation acceleration rate, interpolation deceleration rate |
You can set and monitor warning values for each axis and each axes group |
|||
Absolute encoder support | You can use an OMRON 1S-series Servomotor or G5-series Servomotor with an Absolute Encoder to eliminate the need to perform homing at startup |
|||
Input signal logic inversion | You can inverse the logic of immediate stop input signal, positive limit input signal, negative limit input signal, or home proximity input signal |
|||
External interface signals | The Servo Drive input signals listed below are used. Home signal, home proximity signal, positive limit signal, negative limit signal, immediate stop signal, interrupt input signal |
|||
Unit (I/O) management |
EtherCAT slaves |
Maximum number of slaves | 64 | |
Communi- cations |
Built-in EtherNet/IP port |
Communications protocol | TCP/IP, UDP/IP | |
TCP/IP functions |
CIDR | The function which performs IP address allocations without using a class (class A to C) of IP address |
||
IP Forwarding | The function which forwards IP packets between interfaces |
|||
Packet Filter | The function which checks the IP packet to determine whether to receive and send it based on the source IP address and TCP port number |
|||
CIP communica- tions service |
Tag data links | Programless cyclic data exchange is performed with the devices on the EtherNet/IP network |
||
Message communications |
CIP commands are sent to or received from the devices on the EtherNet/IP network |
|||
CIP Safety routing | Routing function for CIP Safety on the EtherNet/IP network. The endpoint of CIP Safety is NX-SL5[]00 in the system |
|||
TCP/IP applications |
Socket services | Data is sent to and received from any node on Ethernet using the UDP or TCP protocol. Socket communications instructions are used |
||
Secure Socket service (Client) |
Establishes a TLS session with the TCP protocol, and sends and receives arbitrary data to and from the server and any node on the Ethernet using instructions for secure socket communication |
|||
FTP client | Files are transferred via FTP from the CPU Unit to computers or controllers at other Ethernet nodes. FTP client communications instructions are used |
|||
FTP server | Files can be read from or written to the SD Memory Card in the CPU Unit from computers at other Ethernet nodes |
|||
Automatic clock adjustment |
Clock information is read from the NTP server at the specified time or at a specified interval after the power supply to the CPU Unit is turned ON. The internal clock time in the CPU Unit is updated with the read time |
|||
SNMP agent | Built-in EtherNet/IP port internal status information is provided to network management software that uses an SNMP manager |
|||
OPC UA | Server function | The function to respond to requests from clients on the OPC UA network |
||
EtherCAT port |
Supported services |
Process data communications |
A communications method to exchange control information in cyclic communications between the EtherCAT master and slaves. This communications method is defined by CoE |
|
SDO communications |
A communications method to exchange control information in noncyclic event communications between EtherCAT master and slaves. This communications method is defined by CoE |
|||
Network scanning | Information is read from connected slave devices and the slave configuration is automatically generated |
|||
DC (Distributed Clock) | Time is synchronized by sharing the EtherCAT system time among all EtherCAT devices (including the master) |
|||
Enable/disable settings for slaves | The slaves can be enabled or disabled as communications targets |
|||
Disconnecting/connecting slaves | Temporarily disconnects a slave from the EtherCAT network for maintenance, such as for replacement of the slave, and then connects the slave again |
|||
Supported application protocol |
CoE | SDO messages of the CAN application can be sent to slaves via EtherCAT |
||
Communications instructions | CIP communications instructions, socket communications instructions, SDO message instructions, no-protocol communications instructions, FTP client instructions, Modbus RTU protcol instructions, Modbus TCP protcol instructions |
|||
System management |
Event logs | Function | Events are recorded in the logs | |
Maximum number of events |
System event log | 768 *2 [containing] • For CPU Unit: 512 • For NX Unit without MPU: 256 |
||
Access event log | 576 [containing] • For CPU Unit: 512 • For NX Unit without MPU: 64 |
|||
User-defined event log |
512 | |||
Debugging | Online editing |
Single | Programs, function blocks, functions, and global variables can be changed online. More than one operators can change POUs individually via network |
|
Forced refreshing | The user can force specific variables to TRUE or FALSE |
|||
Maximum number of forced variables |
Device variables for EtherCAT slaves |
64 | ||
MC Test Run | Motor operation and wiring can be checked from the Sysmac Studio |
|||
Synchronizing | The project file in the Sysmac Studio and the data in the CPU Unit can be made the same when online |
|||
Differential monitoring | You can monitor when a variable changes to TRUE or changes to FALSE |
|||
Maximum number of monitored variables |
8 | |||
Data tracing | Types | Single triggered trace |
When the trigger condition is met, the specified number of samples are taken and then tracing stops automatically |
|
Continuous trace | Data tracing is executed continuously and the trace data is collected by the Sysmac Studio |
|||
Maximum number of simultaneous data traces |
2 | |||
Maximum number of records | 10,000 | |||
Sampling | Maximum number of sampled variables |
48 | ||
Timing of sampling | Sampling is performed for the specified task period, at the specified time, or when a sampling instruction is executed |
|||
Triggered traces | Trigger conditions are set to record data before and after an event |
|||
Trigger conditions | • When BOOL variable changes to TRUE or FALSE • Comparison of non-BOOL variable with a constant. Comparison method: Equals (=), Greater than (>), Greater than or equals (≥), Less than (<), Less than or equals (≤), Not equal (≠) |
|||
Delay | You can set the percentage of sampling before and after the trigger condition is met |
|||
Safety data logging |
Function | Records variables used in the safety program of the Safety CPU Unit in a chronological order |
||
Targets | Target Safety CPU Unit |
NX-SL5[]00 *3 | ||
Target variable types | Exposed variables and device variables used in the safety program |
|||
Maximum number of logged variables |
100 | |||
Data types | SAFEBOOL, SAFEBYTE, SAFEWORD, SAFEINT, SAFEDINT,BOOL, BYTE, WORD, INT, DINT |
|||
Maximum logging time |
480 s (Depends on logging interval) | |||
Logging interval | Select from minimum value which stores from primary periodic task cycle or adds constant number multiple (x1, x2, x3, x4) of primary periodic task cycle *4 |
|||
Maximum number of simultaneous executions |
2 | |||
Simulation | The operation of the CPU Unit is emulated in the Sysmac Studio |
|||
Reliability functions |
Self- diagnosis |
Controller errors |
Levels | Major faults, partial faults, minor faults, observation, information |
User-defined errors | User-defined errors are registered in advance and then records are created by executing instructions |
|||
Levels | 8 | |||
Security | Protecting software assets and preventing operating mistakes |
CPU Unit names and serial IDs | When going online to a CPU Unit from the Sysmac Studio, the CPU Unit name in the project is compared to the name of the CPU Unit being connected to |
|
Protection | User program transfer with no restoration information |
You can prevent reading data in the CPU Unit from the Sysmac Studio |
||
CPU Unit write protection |
You can prevent writing data to the CPU Unit from the Sysmac Studio or SD Memory Card |
|||
Overall project file protection |
You can use passwords to protect .smc files from unauthorized opening on the Sysmac Studio |
|||
Data protection | You can use passwords to protect POUs on the Sysmac Studio |
|||
Verification of operation authority | Online operations can be restricted by operation rights to prevent damage to equipment or injuries that may be caused by operating mistakes |
|||
Number of groups | 5 | |||
Verification of user program execution ID |
The user program cannot be executed without entering a user program execution ID from the Sysmac Studio for the specific hardware (CPU Unit) |
|||
SD Memory Card functions |
Storage type | SD Memory Card, SDHC Memory Card | ||
Application | Automatic transfer from SD Memory Card |
When the power supply to the controller is turned ON, the data that is stored in the autoload directory of the SD Memory Card is transferred to the controller |
||
Program transfer from SD Memory Card |
With the specification of the system-defined variable, you can transfer a program that is stored in the SD Memory Card to the controller |
|||
SD Memory Card operation instructions |
You can access SD Memory Cards from instructions in the user program |
|||
File operations from the Sysmac Studio |
You can perform file operations for controller files in the SD Memory Card and read/write standard document files on the computer |
|||
SD Memory Card life expiration detection |
Notification of the expiration of the life of the SD Memory Card is provided in a system- defined variable and event log |
|||
Backing up data |
SD Memory Card backups |
Operating methods |
CPU Unit front- panel DIP switch |
You can perform backup, verification, and restoration operations by manipulating the front-panel DIP switch on the CPU Unit |
Specification with system-defined variables |
You can perform backup, verification, and restoration operations by manipulating system-defined variables |
|||
SD Memory Card Window in Sysmac Studio |
Backup and verification operations are performed from the SD Memory Card Window of the Sysmac Studio |
|||
Special instruction | The special instruction is used to backup data |
|||
Protection | Disabling backups to SD Memory Cards |
Backing up data to a SD Memory Card is prohibited |
||
Safety Unit Restore from SD Memory Card | Restores the data of the Safety CPU Unit using the front-panel DIP switch on the Safety CPU Unit and SD Memory Card |
|||
Sysmac Studio Controller backups | The Sysmac Studio is used to backup, restore, or verify controller data |
Besides functions of the NX102-[][][][], functions supported by the NX102-[][]20 are as follows.
Item | Description | |||||
---|---|---|---|---|---|---|
NX102-1220 | NX102-1120 | NX102-1020 | NX102-9020 | |||
Supported port | Built-in EtherNet/IP port | |||||
Supported DB versions *1 *2 |
SQL Server by Microsoft | 2012/2014/2016/2017/2019 | ||||
Oracle Database by Oracle | 11g/12c/18c/19c | |||||
DB2 for Linux, UNIX and Windows by IBM |
9.7/10.1/10.5/11.1 | |||||
MySQL Community Edition by Oracle*3 |
5.6/5.7/8.0 | |||||
Firebird by Firebird Foundation |
2.5 | |||||
PostgreSQL by PostgreSQL Global Development Group |
9.4/9.5/9.6/10/11/12/13 | |||||
Number of DB Connections (Number of databases that can be connected at the same time) |
2 *4 *5 | |||||
Instruction | Supported operations | The following operations can be performed by executing DB Connection Instructions in the CPU Units: Inserting records (INSERT), Updating records (UPDATE), Retrieving records (SELECT), Deleting records (DELETE), Execute Stored Procedure*6, and Execute Batch Insert*6 |
||||
Max. number of instructions for simultaneous execution |
32 | |||||
Max. number of columns in an INSERT operation |
SQL Server: 1,024 Oracle: 1,000 DB2: 1,000 MySQL: 1,000 Firebird: 1,000 PostgreSQL: 1,000 |
|||||
Max. number of columns in an UPDATE operation |
SQL Server: 1,024 Oracle: 1,000 DB2: 1,000 MySQL: 1,000 Firebird: 1,000 PostgreSQL: 1,000 |
|||||
Max. number of columns in a SELECT operation |
SQL Server: 1,024 Oracle: 1,000 DB2: 1,000 MySQL: 1,000 Firebird: 1,000 PostgreSQL: 1,000 |
|||||
Max. number of records in the output of a SELECT operation |
65,535 elements, 4 MB | |||||
Stored procedure call *6 |
Supported databases |
• SQL Server • Oracle Database • MySQL Community Edition • PostgreSQL |
||||
Argument (Sum of IN, OUT and INOUT) |
Up to 256 variables*7 | |||||
Return value | One variable | |||||
Result set | Supported | |||||
Spool function | Not supported | |||||
Batch insert execution *6 |
Supported databases |
• SQL Server • Oracle Database • MySQL Community Edition • PostgreSQL |
||||
Supported data size |
Less than 1,000 columns and upper limit (8 MB) of structure variable size or less*8 |
|||||
Spool function | Not supported | |||||
Max. number of DB Map Variables for which a mapping can be connected *9 |
SQL Server: 30*10 Oracle: 20*10 DB2: 20*10 MySQL: 20*10 Firebird: 15 PostgreSQL: 20*10 |
|||||
Run mode of the DB Connection Service | Operation Mode or Test Mode • Operation Mode: When each instruction is executed, the service actually accesses the DB • Test Mode: When each instruction is executed, the service ends the instruction normally without accessing the DB actually |
|||||
Spool function | Used to store SQL statements when an error occurred and resend the statements when the communications are recovered from the error |
|||||
Spool capacity*11 | 192 KB | |||||
Operation Log function | The following three types of logs can be recorded: • Execution Log: Log for tracing the executions of the DB Connection Service • Debug Log: Detailed log for SQL statement executions of the DB Connection Service • SQL Execution Failure Log: Log for execution failures of SQL statements in the DB |
|||||
DB Connection Service Shutdown function |
Used to shut down the DB Connection Service after automatically saving the operation log files into the SD Memory Card |
|||||
Encrypted Communi- cation |
Supported databases | • SQL Server • Oracle Database • MySQL Community Edition • PostgreSQL |
||||
TLS Ver. | TLS 1.2 |
Item | Discription |
---|---|
Microsoft Corporation: SQL Server | 2008/2008R2 |
Oracle Corporation: Oracle Database | 10g |
Oracle Corporation: MySQL Community Edition | 5.1/5.5 |
International Business Machines Corporation (IBM): DB2 for Linux, UNIX and Windows | 9.5 |
Firebird Foundation Incorporated: Firebird | 2.1 |
The PostgreSQL Global Development Group: PostgreSQL | 9.2/9.3 |
INOSAKI Limited
RM B 5/F Gaylord Comm,
Bldg 114-118 Lockhart Rd.
Hong Kong
INOSAKI Sdn. Bhd.
2-1-9, Ground Floor, One Square, Tingkat Mahsuri 1,
11900 Bayan Lepas, Penan
INOSAKI Pte. Ltd.
101 Upper Cross Street,
No. 06-17, People’s Park Centre,
Singapore (058357)